1 (a) You are given that $5a(a-1) + pa + r = 5a^2 + 7a + 9$. Find the values of p and r that make this an identity.

(a)
$$p =$$
 [2]_

(b) Rearrange the following to make c the subject.

$$5c + 6d = cn + 9d$$

2	(a)	Rearrange	this	formula	to make	p the	subj	ect.

$$t = 2p - 3$$

(b) Solve these simultaneous equations.

$$\begin{aligned}
 x + y &= 7 \\
 x - y &= 3
 \end{aligned}$$

(b)
$$x =$$
____[2]

3 Rearrange to make *p* the subject.

$$C + 5p = a(C - p)$$

$$5(a+b)=2ab$$

(a)		[4]
-----	--	-----

(ii)[2]

(b)	You are given that $f(x) = 2x - 5$.						
	(i)	Find f(3.5).					
	(ii)	Express $f(3x + 4)$ in the form $ax + b$.	(b)(i)[1]				

5	(a)	Solve.		
		$6x^2 = 150$		

(b) Rearrange this formula to make *a* the subject.

$$S = 4bc + 2a^2$$

6 (a) Find the values of a and b so that the following is an identity.

$$2x + a(3x + 5) = bx + 30$$

(b) Rearrange this formula to make p the subject.

$$H=\sqrt{\frac{10p^3}{c}}$$

7 (a Write a **number** in each box so that the following is an identity.

$$5x - 7(2x - 3) = 6x + 3 - \boxed{x + }$$
 [2]

(b) Solve this equation.

$$\frac{5x+4}{2}=x-1$$

(b) _____ [3]

(c) Solve this equation.

$$x^2 = 81$$

(c) _____[2]

(d) Rearrange this formula to make p the subject.

$$H = \sqrt{10p + c}$$

(d) _____[3]

8 (a Solve.

$$4x^2 = 36$$

(a) ______[3]

(b) Rearrange this formula to make *A* the subject.

$$c = \sqrt{\frac{A}{6}}$$

9 (a) Solv	e.
------------	----

$$5y^2 = 80$$

(a)[3]

(b) Rearrange this formula to make *a* the subject.

$$4a - 3c = ac + 6$$

10 Pali wants to find the height, *h* m, of a tree.

He stands a distance, dm, from the tree.

Then he measures the angle, *a*, of the top of the tree from the horizontal.

His friend then measures the height, e m, of Pali's eye from the ground.

(a) Show that the height of the tree is given by this formula.

$$h = e + d \tan a$$
 [2]

(b) When Pali stands 25 m from the tree, angle $a = 32^{\circ}$. The height of his eye above the ground is 1.7 m.

Use the formula $h = e + d \tan a$ to find the height of the tree.

		_				
1	(C)	Rearrange	this formula	i to make	a the sub	iect.

$$h = e + d \tan a$$

11	(a)	Rearrange the	following to	make d	c the subi	ect.
	(~)	i loan ango ano	iono wing to	mano c	, ii io oabj	oot.

$$11a + 5c = d(6 + 2c)$$

(b)
$$f(x) = 5x - 12$$
.

(i) Calculate f(4).

(ii) Find f(x + 1). Give your answer in the form ax + b.

12 (a) Rearrange this formula to make *r* the subject.

$$S = 4\pi r^2$$

(a)_____[3]

(b)
$$f(x) = \frac{3}{4x+6}$$

(i) Find f(1).

(ii) Explain why f(-1.5) cannot be evaluated.

[1]